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Spinodal twinning of a deformed crystal

Tae Wook Heo*, Yi Wang and Long-Qing Chen

Department of Materials Science and Engineering, The Pennsylvania State University, University
Park, PA 16802, USA

(Received 23 October 2013; accepted 1 November 2013)

We propose the possibility of a spinodal mechanism for deformation twinning in
addition to the nucleation and growth mechanism assumed in all existing studies
of twinning, using the thermodynamic stability analysis of a homogeneously
deformed crystal by examining its energy landscape as a function of strain along
the twinning direction obtained from first-principles calculations. Twinning
occurs continuously owing to thermodynamic instability with respect to
twinning at large shear strains, whereas it can only take place through the
nucleation and growth mechanism at small shear strains.

Keywords: deformation twinning; thermodynamic instability; spinodal
mechanism

Twinning is a phenomenon commonly observed in crystalline solids ranging from simple
face-centred cubic (fcc), hexagonal close-packed (hcp) and body-centred cubic metals to
minerals with complex crystal structures. Twinning may take place during crystal growth,
phase transformations with a point-group symmetry reduction or mechanical deformation.
While twinning is to be avoided in some applications such as single-crystal growth, it can
be utilized to improve the properties of materials. For example, deformation twinning,
which is one of the major plastic deformation modes of crystalline solids operating to
release the strain energy when the strain exceeds the elastic regime [1], has been exploited
to dramatically improve the ductility of alloys such as Mg-alloys and steels.

The effects of temperature, strain rate and composition on deformation twinning
have been extensively studied experimentally [1]. Despite the extensive efforts in
uncovering new mechanisms [2–4], exploring the conditions, for example, grain size
[5–8] or crystal size [9], for the twinning, and studying the twin growth behaviour, for
example, growth speed [10,11], the physical mechanisms of deformation twinning have
not been completely understood. Existing theoretical efforts on deformation twinning
include the phenomenological modelling of twin nucleation associated with the
dislocation reaction [12,13], estimation of the stress required for twin nucleation and
the analysis of the criteria for twin growth using a simple model [14], the computation
of twinning energy landscape to determine the critical layer thickness [15,16] and the
investigation of generalized planar fault energy as well as the critical twinning stress for
twin nucleation in pure metals or metallic alloys using density functional theory
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[17–20], molecular dynamics (MD) simulations demonstrating or capturing the twin
nucleation process in fcc or hcp metals [5,21–24], and the energetic approach to
predicting the formation of twins [25]. It is widely known that spontaneous materials
processes such as phase separation and ordering are classified into two mechanisms,
nucleation and growth or spinodal, based on the thermodynamics of the initial state.
However, all the existing studies of deformation twinning either assumed or showed
that it takes place through only a nucleation and growth mechanism [13,14], for exam-
ple, at existing grain boundaries in a polycrystalline solid or other structural defects
where the dissociation of dislocations into stacking faults or the emission of Shockley
partials [22,26–28] occurs. The classical theory of homogeneous twinning also assumed
a nucleation mechanism through thermal fluctuations [1], which requires extremely high
stress. Recently, homogeneous twinning was explained by mechanical instability of a
crystal lattice [29,30]. The main purpose of this work is to demonstrate that twinning in
a severely deformed crystalline solid may take place through a spinodal mechanism at
large shear deformation while twinning at smaller shear deformation occurs via the
classical nucleation and growth mechanism.

We use fcc copper (Cu) as an example, in which twinning takes place on {1 1 1}
twinning planes along h1 1 �2i directions with a total of 12 possible twinning modes.
Therefore, the deformation energy of a crystal under homogeneous shear can be
expressed in terms of 12 deformation strains corresponding to each of the 12 modes.
This energy landscape can, in principle, be directly computed using first-principles
methods [31,32]. However, to generate such a deformation energy function in a
12-dimensional space is cumbersome and hence to simplify the discussion without
losing the essential physics, we computed the deformation energy (or stored strain
energy) on the (1 1 1) plane using the following deformation matrix which represents

the relationship between the reference lattice vectors (R ¼
a~
b~

c~

0
@

1
A) of the original crystal

and the lattice vectors (R0 ¼
a~0

b~
0

c~0

0
@

1
A) of the deformed crystal [33,34]:

X ¼
1þ t=2þ s=2 t=2 �t � s=2
t=2þ s=2 1þ t=2 �t � s=2
t=2þ s=2 t=2 1� t � s=2

2
4

3
5; (1)

where t and s represent the amount of deformation along the twinning direction ½1 1 �2�
and the slipping direction ½1 0 �1�, respectively. The energies were calculated in a 51 × 51
mesh in the t × s space using the first-principles method. We employed the projector-
augmented wave method [31,32] implemented in the Vienna ab initio simulation
package (version 4.6). The exchange-correlation functional according to Perdew–
Burke–Ernzerhof [35] was employed with a 20 × 20 × 20 Γ-centred k-mesh and an
energy cut-off of 300 eV. Figure 1(a) shows the computed deformation energy landscape
in the t × s space of a deformed crystal under a homogeneous shear along possible all
directions on the (1 1 1) plane. For the case of pure twinning without slipping, we may
neglect s and represent the deformation energy function as a function of t only (as indi-
cated by an arrow in Figure 1(a)). We then convert the variable t to the corresponding
shear strain (cð1 1 1Þ½1 1 �2�) using the interplanar spacing of (1 1 1) plane (d1 1 1) as
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cð1 1 1Þ½1 1 �2� ¼
tL½1 1 �2�
d1 1 1

¼ tð ffiffiffi
6

p
a0=2Þffiffiffi

3
p

a0=3
¼ 3ffiffiffi

2
p t; (2)

where L½1 1 �2� is the length of t path we scanned along the ½1 1 �2� direction for the
calculation and a0 is the lattice parameter.

Within the context of diffuse-interface approach, we define a phase-field order
parameter η to distinguish the original undeformed crystal (η = 0) and the twinned state
(η = 1), i.e. the order parameter is basically the shear strain along ½1 1 �2� direction on the
(1 1 1) plane normalized by the magnitude of twinning strain ctwinð1 1 1Þ½1 1 �2� (¼ 1=

ffiffiffi
2

p
[25])

of a fully twinned state as g ¼ cð1 1 1Þ½1 1 �2�=ctwinð1 1 1Þ½1 1 �2� ¼
ffiffiffi
2

p
cð1 1 1Þ½1 1 �2� where cð1 1 1Þ½1 1 �2� is

the shear strain along ½1 1 �2� direction on the (1 1 1) plane. We normalize the deforma-
tion energy f using |Δfmax| which is the difference between the maximum deformation
energy (between the original crystal state and the twin state) along the twinning direc-
tion and the energy of the original crystal or the twin state, i.e. f* = f/|Δfmax| as shown in
Figure 1(b). The deformation energy at the twin state is exactly the same (=0) as that of
the original crystal. If the crystal is enforced to be deformed further along ½1 1 �2�
direction on the (1 1 1) plane even after the twin state established, i.e. η > 1, the planar
stacking highly deviates from the regular fcc stacking. It causes the high deformation
energy within the regime corresponding to 1 < η ≤ 3 as shown in Figure 1(b). In addi-
tion, the calculation result confirms that deformation twinning occurs only within the
regime corresponding to 0 ≤ η ≤ 1. Further, when η reaches 3, the normal fcc stacking is
established again, which results in zero deformation energy (ground state) when η = 3.

Figure 1. (colour online) (a) Deformation energy landscape of a deformed Cu crystal along all
directions on a (1 1 1) plane computed by the first-principles method. (b) normalized deformation
energy landscape and (c) normalized tangent modulus as a function of an order parameter
(normalized shear strain) along a ½1 1 �2� direction on a (1 1 1) plane of a deformed Cu crystal.
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As one can see from the figure, the deformation energy landscape displays a
double-well type function within the regime corresponding to 0 ≤ η ≤ 1, which is
associated with the twinning process. For convenience, the energy profile of that regime
(0 ≤ η ≤ 1) is fitted to the eighth-order polynomial (See Equation (S4) in the
Supplemental Material for the explicit form of the polynomial).

Deformation twinning can be understood as a rapid transformation process from a
homogeneously deformed crystal to a twinned structure under a fixed macroscopic
deformation driven by deformation energy dissipation as described in Figure 2. The
stability of the homogeneously deformed crystal can be examined by considering the
variation of the total free energy of the system with infinitesimal fluctuations of an
order parameter under the fixed macroscopic strain constraint. The total Helmholtz free
energy F of an inhomogeneous system in the diffuse-interface description [36] is given
by the following functional form:

F ¼
Z
X

f ðgÞ þ jij
2
rigrjg

h i
dV þ Ecoh; (3)

where κij is the gradient energy coefficient tensor, Ω represents the entire system, and
Ecoh represents the coherency strain energy arising from the lattice distortion between
the matrix and deformed regions during the twinning process. Essentially, the deforma-
tion energy f represents the stored strain energy density of a local domain participating
in the deformation process. Following Khachaturyan [37], the coherency strain energy
is expressed by:

Ecoh ¼ 1

2
VX � Cijkl�eij�ekl � Cijkl�eij

Z
X
e0kldV þ 1

2

ZZZ
d3k

ð2pÞ3 Bðn~Þjhðk
~Þj2; (4)

where VΩ denotes the volume of the entire system, �eij is the homogeneous strain
representing the macroscopic shape deformation, e0ij is the eigenstrain, hðk~Þis the Fourier

Figure 2. (colour online) Schematic diagram of the deformation twinning process from a homo-
geneously deformed crystal to a twinned structure driven by deformation energy dissipation.
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transform of the shape function representing the domains such as deformation twins in
a microstructure, and Bðn~Þ ¼ Cijkle0ije

0
kl � nir0ijXjlðn~Þr0lmnm where r0ij ¼ Cijkle0kl,

X�1
jl ¼ Cjilmninm, and ni denotes the unit wave vector in Fourier space. For simplicity,

the elastic modulus Cijkl for the coherency strain energy calculation is assumed to be
homogeneous within an entire system. The deformation twinning involves simple shear-
ing with the magnitude of γ. The eigenstrain is expressed as e0ij ¼ cðlin0j Þ where l~ is the
unit vector along shear direction, and n~0 is the unit vector normal to the twinning plane.
Plugging e0ij into Bðn~Þ and assuming that a deformation twin is an infinite platelet of
infinitesimal thickness (i.e. Bðn~Þ in Equation (4) becomes Bðn~0Þ), we conclude that the
third term in Equation (4) is equal to zero [37]. In addition, the second term becomes
constant with the constraint of the fixed deformation, i.e.

R
X e0ijdV ¼ VX�eij. This means

that the contribution of the coherency strain energy to the thermodynamic stability is
not significant. Therefore, the variation of the total free energy with small fluctuations
is given by the following:

DF ¼
Z
X

f ðgÞ þ jij
2
rigrjg

h i
dV �

Z
X
f ð�gÞdV : (5)

The deformation energy can be expanded with respect to �g up to the second-order term
for the small fluctuations as f ðgÞ ¼ f ð�gÞ þ ðg� �gÞ@f@g

���
g¼�g

þ 1
2 ðg� �gÞ2@2f

@g2

���
g¼�g

. The differ-

ence in free energy per volume between the initial homogeneously deformed crystal
and one with a fluctuating order parameter given by g� �g ¼ A cosðbiriÞ where A is the
amplitude of the fluctuation, βi is the components of the wave vector k~, and ri is the
component of the position vector r~ under the fixed deformation condition (orR
X ðg� �gÞdV ¼ 0 where �g is the fixed normalized shear strain) as in [38–40] becomes

DF
VX

¼ 1

4
A2 @2f

@g2

����
g¼�g

þjijbibj

" #
; (6)

where the second term in the bracket is positive. Therefore, the stability of the
homogeneously deformed crystal can be simply determined by the second derivative of
the deformation energy with respect to the order parameter (or the deformation shear
strain along twinning direction on the twinning plane).

It should be noted that the second derivative of the deformation energy with respect
to deformation shear strain is essentially the tangent modulus μ corresponding to the
twinning direction on the twinning plane, i.e. lðgÞ ¼ @2f

@c2ð1 1 1Þ½1 1 �2�
¼ 2 @2f

@g2. The normalized

tangent modulus μ* as a function of the order parameter (normalized shear strain) is
plotted in Figure 1(c). The values of tangent modulus are zero at two-order parameter
values (~0.23 and ~0.77) corresponding to the inflection points of f and are negative in
between. A negative tangent modulus implies the thermodynamic instability of a
deformed state. Therefore, for an initial severely deformed state described by any of the
order parameter values between the two inflection points are thermodynamically unsta-
ble. Using the analogy to thermodynamic instability of a binary solution with respect
to composition, such a severely deformed state is unstable with respect to infinitesimal
order parameter fluctuations, and the corresponding twinning process is called “spinodal
twinning” analogous to “spinodal decomposition” [38–41]. The spinodal twinning
concept would provide a natural explanation of spontaneous and/or homogeneous
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twinning in single crystals or grain interiors observed in MD simulations [5,21,23] or
experiments [42,43].

For order parameter values outside the spinodal regime, the tangent modulus is
positive and an initial deformed state described by those order parameter values is
metastable, i.e. it is stable with respect to small fluctuations in order parameter, but
unstable with respect to large fluctuations in order parameter. Therefore, deformation
twinning of such a deformed state takes place through the classical nucleation and
growth mechanism.

To demonstrate the spinodal twinning mechanism or the classical nucleation and
growth mechanism, we designed ‘computational experiments’ using the phase-field
method [44–47] for deformation twinning (see Ref. [34] and Supplemental Material for
details). We considered a simple controlled configuration of the computational system
where other deformation modes are not allowed than twinning in order to be able to
clearly show the differences in operating twinning mechanisms depending on the mag-
nitudes of the applied shear strain. For simplicity, we performed computer simulations
of twinning processes in two dimensions on the ð1 �1 0Þ plane with the computational
cell outlined in dashed lines in Figure 3(b). In this case, there are two possible modes
of twinning; one is along the ½1 1 �2� direction on the (1 1 1) twinning plane (variant 1),
and the other is along the ½�1 �1 �2� direction on the ð�1 �1 1Þ habit plane (variant 2). To
reduce the possible discretization grid effect, we define new coordinate axes (x′, y′, z′)
along the ½0 0 �1�, [1 1 0] and ½1 �1 0� directions, respectively. Therefore, we use two-order
parameter fields, η1 and η2, to describe the twinning process. ðg1; g2Þ ¼ ð0; 0Þ, ð1; 0Þ
and ð0; 1Þ represent the original crystal, twin variant 1 and twin variant 2, respectively.

Since the interfacial energy along the twin boundaries is much smaller than
interfaces along other orientations, the interfacial energy between twin and original
crystal is strongly anisotropic. We fitted the gradient energy coefficient using the twin
boundary energy (25.4 mJ/m2 (calculated in this work)) and the dislocation core energy
(Ecore = 4.8 × 10−7 mJ/m) [48–50].

We use the deformation strain tensor D along a twin direction on a twinning plane
as the eigenstrain (e0ij), which is directly obtained from the deformation matrix X in
Equation (1). The symmetrized deformation strain tensor in (x, y, z) (see Figure 3(b) for
the coordinate setting and Supplemental Material for the derivation) is given by

0 c=2 0
c=2 0 0
0 0 0

2
4

3
5, which can be expressed in terms of the order parameter as

g �
0 ctwin=2 0

ctwin=2 0 0
0 0 0

2
4

3
5 ¼ g � ½etwin;refij � where etwin;refij is the twinning strain tensor

[25] in (x, y, z) reference frame. The twinning strain tensors of variant 1 (etwin;1ij ) and 2

(etwin;2ij ) in (x′, y′, z′) are obtained by the axis transformation from (x, y, z) to (x′, y′, z′).

Thus, the eigenstrain tensor is given by e0ij ¼
P

p e
twin; p
ij HðgpÞ where H is the interpola-

tion function [34]. Elastic constants for the calculation of coherency strain energy were
chosen to be C11 = 176.20 GPa, C12 = 124.94 GPa and C44 = 81.77 GPa [51].

The evolution of order parameters is assumed to be governed by the time-dependent
Ginzburg–Landau (TDGL) equation [52]. In particular, the deformation twinning
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process was simulated under a fixed macroscopic deformation, i.e. the volume average
of the eigenstrain during the entire process should be equal to the fixed homogeneous
strain (�eij): 1

V

R
X e0ijdV ¼ �eij. The TDGL equation with the constraint was numerically

solved by adding a penalty term [53], 1
2

P
i; j Mijð 1

VX

R
X e0ijdV � �eijÞ2 where Mij are the

penalty constants to the free energy (see Ref. [34] and Supplemental Material).
Following Khachaturyan’s elasticity theory [37], we solved the mechanical equilibrium
equation, ∇jσij = 0, using Fourier spectral method [37] to obtain the elastic solution. Our
current model assumes the linear and homogeneous elasticity for solving the mechanical
equilibrium equation. The assumption can be relaxed by applying the nonlinear elastic-
ity [54] and the inhomogeneous elasticity [55]. In addition, it should be noted that the
model does not take into account the possible thermal effects and does not consider the
possibility of dislocation slip to focus on the deformation twinning.

All the simulations were conducted in a square domain with 512Δx × 512Δx grids
where Δx is the grid size and was chosen as 0.2 nm with a periodic boundary condition.
We normalized the parameters in the simulations:D x� ¼ Dx

l , t
* = L|Δfmax|t, j�11 ¼ j11

l2jDfmaxj,

Figure 3. (colour online) (a) Spinodal twinning regimes of Cu where γ represents the shear strain
along a ½1 1 �2� direction on a (1 1 1) plane. (b) system configuration for phase-field simulations
and (c) order parameter profiles by phase-field simulations of deformation twinning in Cu with
initial small fluctuations or randomly distributed twin nuclei where �c represents magnitude of the
fixed macroscopic shear strain along a ½1 1 �2� direction on a (1 1 1) plane.
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j�22 ¼ j22
l2jDfmaxj, C

�
11 ¼ C11

jDfmaxj, C
�
12 ¼ C12

jDfmaxj and C�
44 ¼ C44

jDfmaxj. The characteristic length (l) is
chosen to be the same as Δx, the maximum driving force (|Δfmax|) is obtained from the
deformation energy, and L is the kinetic coefficient of the TDGL equation.

The simulations started with a homogeneously deformed state (∀(η1, η2) = (α, β)),
and the applied macroscopic strain (�eij) as a mechanical boundary condition is equal to
ða � etwin;1ij þ b � etwin;2ij Þ where etwin;1ij and etwin;2ij are the twinning strain tensors of twin
variant 1 and 2 as defined in Supplemental Material. The α and β can be any value
between 0 and 1 to describe the initial deformation state. First of all, we chose several
magnitudes of macroscopic shear strain (�c) along ½1 1 �2� direction on a (1 1 1) plane, i.e.
the initial condition of order parameter was ∀(η1, η2) = (α, 0) with small order
parameter fluctuations (−0.0025~0.0025).

The first row of Figure 3(c) shows the simulation results with shear strain magni-
tudes near the twining spinodal in Figure 3(a). It should be noted that such large shear
strains can be experimentally achieved. For instance, the equal channel angular pressing
technique enables quite large shear strains (~1.0) of Cu [56]. Therefore, shear strain
magnitudes within the range can be applicable to the shear deformation of fcc Cu. For
shear strains inside the spinodal (�c = 0.170 (�g = 0.24), or 0.177 (�g = 0.25)), deformation
twinning occurs spontaneously with initial, small order parameter fluctuations. However,
outside the spinodal regime (�c = 0.156 (�g = 0.22) or 0.163 (�g = 0.23)), the homogeneous
deformed state is maintained under the small order parameter fluctuations owing to its
metastability, i.e. twinning requires explicit nucleation and growth.

To model the nucleation and growth mechanism at smaller deformation, we
randomly distributed twin nuclei. We assumed a nucleus to be a stack of a few planar
faults with very large aspect ratio (length/thickness) [16,19,25], i.e. we chose a layer
with thickness 3Δx as a nucleus. The second row of Figure 3(c) shows examples of
twin structure formation via the nucleation and growth mechanism. Lengthening and
thickening of twins take place under small macroscopic strains outside the spinodal
regime, which results in a twinned structure that is close metastable equilibrium as
additional simulation steps did not significantly change the twin microstructure. Our
simulation results convincingly show that deformation twins may be formed by
completely different mechanisms, i.e. spinodal or nucleation and growth, depending on
the deformation strain state of a crystal.

In summary, we proposed the possibility of spinodal mechanism with respect to a
shear strain for deformation twinning analogous to spinodal decomposition of a binary
solution with respect to a composition through the thermodynamic analysis of the
deformation energy landscape of a homogeneously deformed crystal computed by first-
principles calculations. The twinning process occurs continuously without having to
overcome a nucleation barrier due to thermodynamic instability of a deformed state
with respect to twinning at large shear deformation inside the spinodal regime (@

2f
@g2 \0).

On the other hand, twining can only take place through the nucleation and growth
mechanism, which requires overcoming a nucleation barrier at small shear deformation
outside the spinodal regime (@

2f
@g2 [ 0). The proposed mechanism was demonstrated

using phase-field simulations. The spinodal twinning mechanism provides a more
plausible interpretation of twinning in a severely deformed crystal. We show that the
thermodynamics of spinodal twinning, with deformation strain as a globally conserved
order parameter, bears a strong similarity to classical spinodal decomposition described
by a composition that is both locally and globally conserved. Therefore, spinodal
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mechanism is a much more common mechanism that may be responsible for a wide
variety of physical processes in nonequilibrium systems in addition to spinodal phase
separation.
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